For the use of a Registered Medical Practitioner or a Hospital or a Laboratory only OR for Specialist Use

Erlotinib Tablets 150 mg

Erlocip-E 150

Composition Each film coated tablet contains:

Erlotinib Hydrochloriode equivalent to Erlotinib

Colour: Titanium Dioxide Excipients with known effects: Lactose Dosage Form

Tablet

Pharmacolog

Pharmacodynamics Pharmacotherapeutic group: antineoplastic agent protein kinase inhibitor, ATC code: L01XE03

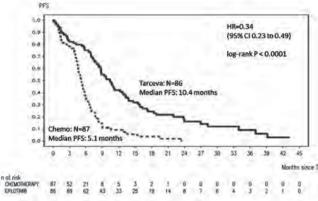
Mechanism of action Erlotinib is an epidermal growth factor receptor/human epidermal growth factor receptor type 1 (EGFR also known as HER1) tyrosine kinase inhibitor. Erlotinib potently inhibits the intracellular phosphorylation of EGFR. EGFR is expressed on the cell surface of normal cells and cancer cells. In non-clinical models, inhibition of EGFR phosphotyrosine results in cell stasis and/or death.

EGFR mutations may lead to constitutive activation of anti-apoptotic and proliferation signaling pathways. The potent effectiveness of erlotinib in blocking EGFR-mediated signalling in these EGFR mutation positive tumours is attributed to the tight binding of erlotinib to the ATP-binding site in the mutated kinase domain of the EGFR. Due to the blocking of downstream-signaling, the proliferation of cells is stopped, and cell death is induced through the intrinsic apoptotic pathway. Tumour regression is observed in mouse models of enforced expression of these EGFR activating mutations.

Clinical efficacy

- First-line Non-Small Cell Lung Cancer (NSCLC) therapy for patients with EGFR activating mutations

(erlotinib administered as monotherapy): The efficacy of erlotinib in first-line treatment of patients with EGFR activating mutations in NSCLC was demonstrated in a phase III, randomized, open-label trial (ML20650, EURTAC). This study was conducted in Caucasian patients with metastatic or locally advanced NSCLC (stage IIIB and IV) who have not received previous chemotherapy or any systemic antitumour therapy for their advanced disease and who present mutations in the tyrosine kinase domain of the EGFR (exon 19 deletion or exon 21 mutation). Patients were randomized 1:1 to receive erlotinib 150 mg daily or up to 4 cycles of platinum based doublet


The primary endpoint was investigator assessed PFS. The efficacy results are summarized in Table 1. Figure 1: Kaplan-Meier curve for investigator assessed PFS in trial ML20650 (EURTAC) (April 2012 cut-

21058408

21028408

Erlocip-E 150

Table 1: Efficacy results of erlotinib versus chemotherapy in trial ML20650 (EURTAC)

---- DEMONERAL

		Erlotinib	Chemo- therapy	Hazard Ratio (95% CI)	p-value
Pre-planned Interim		n=77	n=76		
Analysis (35% OS maturity) (n=153)	Primary endpoint: Progression Free Survival (PFS, median in months)*	9.4	5.2	0.42	p<0.0001
Cut-off date: Aug	Investigator Assessed **	5.4	0.2	[0.27-0.64]	p<0.0001
2010	Independent Review **	10.4	5.4	0.47 [0.27-0.78]	p=0.003
	Best Overall Response Rate (CR/PR)	54.5%	10.5%		p<0.0001
	Overall Survival (OS) (months)	22.9	18.8	0.80 [0.47-1.37]	p=0.4170
Exploratory Analysis		n=86	n=87		
(40% OS maturity) (n=173)	PFS (median in months), Investigator assessed	9.7	5.2	0.37 [0.27-0.54]	p<0.0001
Cut-off date: Jan 2011	Best Overall Response Rate (CR/PR)	58.1%	14.9%		p<0.0001
	OS (months)	19.3	19.5	1.04 [0.65-1.68]	p=0.8702
Updated Analysis		n=86	n=87		
(62% OS maturity) (n=173)	PFS (median in months)	10.4	5.1	0.34 [0.23-0.49]	p<0.0001
Cut-off date: April 2012	OS*** (months)	22.9	20.8	0.93 [0.64-1.36]	p=0.7149

omplete response; PR=partial response

* A 58% reduction in the risk of disease progression or death was observed

** Overall concordance rate between investigator and IRCI assessment was 70%
*** A high crossover was observed with 82% of the patients in the chemotherapy arm receiving subsequer therapy with an EGFR tyrosine kinase inhibitor and all but 2 of those patients had subsequent erlotinib.

- Maintenance NSCLC therapy after first-line chemotherapy (erlotinib administered as monotherapy): The efficacy and safety of erlotinib as maintenance after first-line chemotherapy for NSCLC was demonstrated in a randomized, double-blind, placebo-controlled trial (BO18192, SATURN). This study was conducted in 889 patients with locally advanced or metastatic NSCLC who did not progress after 4 cycles of platinum-based doublet chemotherapy. Patients were randomized 1:1 to receive erlotinib 150 mg or placebo orally once daily until disease progression. The primary endpoint of the study was progres free survival (PFS) in all patients and in patients with an EGFR IHC positive tumour. Baseline demogra

and disease characteristics were well balanced between the two treatment arms. Patients with ECOG PS>1, significant hepatic or renal co-morbidities were not included in the study

ITT population results:

he primary PFS analysis in all patients (n=889) showed a PFS hazard ratio (HR) of 0.71 (95% CI, 0.62 to 0.82; p<0.0001) for the erlotinib group relative to the placebo group. The mean PFS was 22.4 weeks in the erfoliable group compared with 16.0 weeks in the placebo group. PFS results were confirmed by an independent review of the scans. Quality of life data did not suggest a detrimental effect from erlotinib compared with placebo.

A PFS HR of 0.69 (95% CI, 0.58 to 0.82; p < 0.0001) was observed in the coprimary patient population with EGFR IHC positive tumours (n=621). The mean PFS was 22.8 weeks in the erlotinib group (range 0.1 to 78.9 weeks compared with 16.2 weeks in the placebo group (range 0.1 to 88.1 weeks). The progress free survival rate at 6 months was 27% and 16%, respectively for erlotinib and placebo.

Concerning the secondary endpoint of overall survival, the HR was 0.81 (95% CI, 0.70 to 0.95; p=0.0088). The median overall survival was 12.0 months in the erlotinib group versus 11.0 months in the placebo

Patients with EGFR activating mutations had the largest benefit (n= 49, PFS HR=0.10, 95% CI, 0.04 to 0.25; p<0.0001). In patients with EGFR wild type tumours (n=388), the PFS HR was 0.78 (95% CI, 0.63 to 0.96; p=0.0185) and the overall survival HR was 0.77 (95% CI, 0.61 to 0.97; p=0.0243).

- Patients with Stable Disease after chemotherapy

Patients with stable disease (SD) (n= 487) had a PFS HR of 0.68 (95% CI, 0.56 to 0.83; p<0.0001; median 12.1 weeks in the erlotinib group and 11.3 weeks in the placebo group) and an overall survival HR of 0.72 (95% CI, 0.59 to 0.89; p= 0.0019; median 11.9 months in the erlotinib group and 9.6 months in the placebo group).

The effect on overall survival was explored across different subsets of patients with SD receiving erlotinib The effect on overall survival was explored across oillerent subsets of patients with 5D receiving enduring. This did not show major qualitative differences between patients with squamous cell carcinoma (HR 0.67, 95% CI 0.48-0.92) and non-squamous cell carcinoma (HR 0.76, 95% CI 0.59-1.00) and between patients with EGFR activating mutations (HR 0.48, 95% 0.14-1.62) and without EGFR activating mutations (HR 0.65, 95% CI 0.48-0.87)

- NSCLC treatment after failure of at least one prior chemotherapy regimen (erlotinib administered as monotherapy):

The efficacy and safety of erlotinib as second/third-line therapy was demonstrated in a randomised double-blind, placebo-controlled trial (BR.21), in 731 patients with locally advanced or metastatic NSCLC after failure of at least one chemotherapy regimen. Patients were randomised 2:1 to receive erlotinib 150 mg or placebo orally once daily. Study endpoints included overall survival, progression-free survival (PFS), response rate, duration of response, time to deterioration of lung cancer-related symptoms (cough noea and pain), and safety. The primary endpoint was survival.

Demographic characteristics were well balanced between the two treatment groups. About two-thirds of the patients were male and approximately one-third had a baseline ECOG performance status (PS) of 2, and 9% had a baseline ECOG PS of 3. Ninety-three percent and 92% of all patients in the erlotinib and placebo groups, respectively, had received a prior platinum-containing regimen and 36% and 37% of all patients, respectively, had received a prior platinum-containing regimen and 36% and 37% of all

The adjusted hazard ratio (HR) for death in the erlotinib group relative to the placebo group was 0.73 (95% CI, 0.60 to 0.87) (p = 0.001). The percent of patients alive at 12 months was 31.2% and 21.5%, for the erlotino and placebo groups, respectively. The median overall survival was 6.7 months in the erlotinib group (95% CI, 5.5 to 7.8 months) compared with 4.7 months in the placebo group (95% CI, 4.1 to 6.3 months).

The effect on overall survival was explored across different patient subsets. The effect of erlotinib on working the first of the first of the second states of the second states (ECOG) of 2-3 (HR = 0.77, 95% CI 0.6-1.0) or 0-1 (HR = 0.73, 95% CI 0.6-0.9), male (HR = 0.76, 95% CI 0.6-0.9) or female patients (HR = 0.80, 95% CI 0.6-1.1), patients < 65 years of age (HR = 0.75, 95% CI 0.6-0.9) or older patients (HR = 0.79, 95% CI 0.6-1.0), patients with one prior regimen (HR = 0.76, 95% CI 0.6-1.0) or more than one prior regimen (HR = 0.75, 95% CI 0.6-1.0), Caucasian (HR = 0.79, 95% CI 0.6-1.0) or Asian patients (HR = 0.61, 95% CI 0.4-1.0), patients with adenocarcinoma (HR = 0.61, 95% CI 0.6-0.9) or squamous cell carcinoma (HR = 0.67, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.5-0.9), but not in pa 0.7-1.5), patients with stage IV disease at diagnosis (HR = 0.92, 95% CI 0.7-1.2) or < stage IV disease at diagnosis (HR = 0.65, 95% CI 0.5-0.8). Patients who never smoked had a much greater benefit from urvival HR = 0.42, 95% Cl 0.28-0.64) compared with current or ex-smokers (HR = 0.87, 95% CI 0.71-1.05).

In the 45% of patients with known EGFR-expression status, the hazard ratio was 0.68 (95% CI 0.49-0.94) for patients with EGFR-positive tumours and 0.93 (95% CI 0.63-1.36) for patients with EGFR-negative tumours (defined by IHC using EGFR pharmDx kit and defining EGFR-negative as less than 10% tumour cells staining). In the remaining 55% of patients with unknown EGFR-expression status, the hazard ratio was 0.77 (95% CI 0.61-0.98).

The median PFS was 9.7 weeks in the erlotinib group (95% CI. 8.4 to 12.4 weeks) compared with 8.0 In a post-hoc analysis, patients on erlotinib who developed a rash had a longer overall survival compared veeks in the placebo group (95% CI, 7.9 to 8.1 w

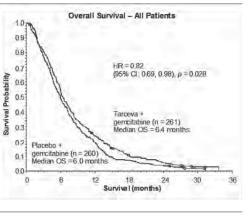
The objective response rate by RECIST in the erlotinib group was 8.9% (95% CI, 6.4 to 12.0).

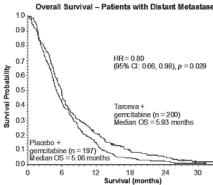
The first 330 patients were centrally assessed (response rate 6.2%); 401 patients were inve assessed (response rate 11,2%).

The median duration of response was 34.3 weeks, ranging from 9.7 to 57.6+ weeks. The proportion of patients who experienced complete response, partial response or stable disease was 44.0% and 27.5%, respectively, for the erlotinib and placebo groups (p = 0.004).

A survival benefit of erlotinib was also observed in patients who did not achieve an objective tumour response (by RECIST). This was evidenced by a hazard ratio for death of 0.82 (95% CI, 0.68 to 0.99) among patients whose best response was stable disease or progressive disease.

Erlotinib resulted in symptom benefits by significantly prolonging time to deterioration in cough, dyspnoea and pain, versus placebo


<u>-Pancreatic cancer (erlotinib administered concurrently with gemcitabine in study PA.3)</u>. The efficacy and safety of erlotinib in combination with gemcitabine as a first-line treatment was assessed in a randomised, double-blind, placebo-controlled trial in patients with locally advanced, unresectable or metastatic pancreatic cancer. Patients were randomised to receive erlotinib or placebo once daily on a continuous schedule plus gemcitabine IV (1000 mg/m², Cycle 1 - Days 1, 8, 15, 22, 29, 36 and 43 of an 8 week cycle; Cycle 2 and subsequent cycles - Days 1, 8 and 15 of a 4 week cycle [approved dose and schedule for pancreatic cancer, see the gemcitabine SPC]). erlotinib or placebo was taken orally once daily until disease progression or unacceptable toxicity. The primary endpoint was overall survival.


Baseline demographic and disease characteristics of the patients were similar between the 2 treatment groups, 100 mg erlotinib plus gemcitabine or placebo plus gemcitabine, except for a slightly larger proportion of females in the erlotinib/gemcitabine arm compared with the placebo/gemcitabine arm:

Baseline	Erlotinib	Placebo
Females	51%	44%
Baseline ECOG performance status (PS) = 0	31%	32%
Baseline ECOG performance status (PS) = 1	51%	51%
Baseline ECOG performance status (PS) = 2	17%	17%
Metastatic disease at baseline	77%	76%

Survival was evaluated in the intent-to-treat population based on follow-up survival data. Results are shown in the table below (results for the group of metastatic and locally advanced patients are derived from exploratory subgroup analysis).

Outcome	Erlotinib	Placebo	Δ	CI of ∆	HR	CI of HR	P- value
	(months)	(months)	(months)				Value
Overall Population			·	<u>`</u>		·	- -
Median overall survival	6.4	6.0	0.41	-0.54-1.64	0.82	0.69-0.98	0.028
Mean overall survival	8.8	7.6	1.16	-0.05-2.34]		
Metastatic Population	n						
Median overall survival	5.9	5.1	0.87	-0.26-1.56	0.80	0.66-0.98	0.029
Mean overall survival	8.1	6.7	1.43	0.17-2.66]		
Locally Advanced Po	pulation			·			
Median overall survival	8.5	8.2	0.36	-2.43-2.96	0.93	0.65-1.35	0.713
Mean overall survival	10.7	10.5	0.19	-2.43-2.69			

In a post-hoc analysis, patients with favourable clinical status at baseline (low pain intensity, good QoL and good PS) may derive more benefit from erlotinib. The benefit is mostly driven by the presence of a The recommended daily dose of erlotinib is 150 mg taken at least one hour before or two hours after the ngestion of food. low pain intensity score.

Patients with pancreatic cancer: to patients who did not develop rash (median OS 7.2 months vs 5 months, HR:0.61). The recommended daily dose of erlotinib is 100 mg taken at least one hour before or two hours after the ingestion of food, in combination with gemcitabine (see the summary of product characteristics of gemcitabine for the pancreatic cancer indication). In patients who do not develop rash within the first 4 – 8 weeks of treatment, further erlotinib treatment should be re-assessed (see *Pharmacodynamics*). 90% of patients on erlotinib developed rash within the first 44 days. The median time to onset of rash was 10 days.

Pharmacokinetic

Absorption

After oral administration, erlotinib peak plasma levels are obtained in approximately 4 hours after oral dosing. A study in normal healthy volunteers provided an estimate of the absolute bioavailability of 59%. Precautions) Concomitant use of CYP3A4 substrates and modulators may require dose adjustment (see Drug The exposure after an oral dose may be increased by food.

Patients with hepatic impairment: Erlotinib is eliminated by hepatic metabolism and biliary excretion Distribution: Friotinib has a mean apparent volume of distribution of 232 I and distributes into tumour <u>Distribution</u>. Enduling has a mean apparent volume of distribution of 252 and distributes into thinduct tissue of humans. In a study of 4 patients (3 with non-small cell lung cancer [NSCLC], and 1 with laryngeal cancer) receiving 150 mg daily oral doses of erlotinib, tumour samples from surgical excisions on Day 9 of treatment revealed tumour concentrations of erlotinib that averaged 1185 ng/g of tissue. This Although erlotinib exposure was similar in patients with moderately impaired hepatic function (Child-Pugh score 7-9) compared with patients with adequate hepatic function, caution should be used when administering erlotinib to patients with patients manufacture repatie function, calution should be used when administering erlotinib to patients with hepatic impairment. Dose reduction or interruption of erlotinib should be considered if severe adverse reactions occur. The safety and efficacy of erlotinib has not corresponded to an overall average of 63% (range 5-161%) of the steady state observed peak plasma concentrations. The primary active metabolites were present in tumour at concentrations averaging 160 ng/g tissue, which corresponded to an overall average of 113% (range 88-130%) of the observed steady been studied in patients with severe hepatic dysfunction (AST/SGOT and ALT/SGPT> 5 x ULN). Use of Erlocip-E 150 in patients with severe hepatic dysfunction is not recommended (see Phan state peak plasma concentrations. Plasma protein binding is approximately 95%. Erlotinib binds to serum albumin and alpha-1 acid glycoprotein (AAG).

Biotransformation

Erlotinib is metabolised in the liver by the hepatic cytochromes in humans, primarily CYP3A4 and to a lesser extent by CYP1A2. Extrahepatic metabolism by CYP3A4 in intestine, CYP1A1 in lung, and 1B1 in tumour tissue potentially contribute to the metabolic clearance of erlotinib.

There are three main metabolic pathways identified: 1) O-demethylation of either side chain or both, followed by oxidation to the carboxylic acids; 2) oxidation of the acetylene moiety followed by hydrolysis to the aryl carboxylic acid; and 3) aromatic hydroxylation of the phenyl-acetylene moiety. The primary Indersteed dose of endthinib in NSCLC patients who currently smoke cigarettes was 300 mg. Efficacy and long term safety of a dose higher than the recommended starting doses have not been established in patients who continue to smoke cigarettes (see *Drug Interactions* and *Pharmacokinetics*). Therefore, metabolites OSI-420 and OSI-413 of erlotinib produced by O-demethylation of either side chain have comparable potency to erlotinib in non-clinical *in vitro* assos and *in vivro* tumour models. They are present in plasma at levels that are <10% of erlotinib and display similar pharmacokinetics as erlotinib. current smokers should be advised to stop smoking, as plasma concentrations of erlotinib in smokers as mpared to non-smokers are reduced

Erlotinib is excreted predominantly as metabolites via the faeces (>90%) with renal elimination accounting Contraindications for only a small amount (approximately 9%) of an oral dose. Less than 2% of the orally administered dose is excreted as parent substance. A population pharmacokinetic analysis in 591 patients receiving single agent erlotinib shows a mean apparent clearance of 4.47 l/hour with a median half-life of 36.2 Hypersensitivity to erlotinib or to any of the excipients. Warnings and Precautions Assessment of EGFR mutation status hours. Therefore, the time to reach steady state plasma concentration would be expected to occur in When assessing the EGFR mutation status of a patient, it is important that a well-validated and robust methodology is chosen to avoid false negative or false positive determinations. imately 7-8 days.

Pharmacokinetics in special populations

Based on population pharmacokinetic analysis, no clinically significant relationship between predicted Smokers Current smokers should be advised to stop smoking, as plasma concentrations of erlotinib in smokers as apparent clearance and patient age, bodyweight, gender and ethnicity were observed. Patient factors, which correlated with erlotinib pharmacokinetics, were serum total bilirubin, AAG and current smoking. Increased serum concentrations of total bilirubin and AAG concentrations were associated with a reduced ompared to non-smokers are reduced. The degree of reduction is likely to be clinically significant (see Drug Interactions). erlotinib clearance. The clinical relevance of these differences is unclear. However, smokers had an 21058408 increased rate of erlotinib clearance. This was confirmed in a pharmacokinetic study in non-smo and currently cigarette smoking healthy subjects receiving a single oral dose of 150 mg erlotinib. The

geometric mean of the Crew was 1056 ng/mL in the non-smokers and 689 ng/mL in the smokers with a geometric mean of the Θ_{max} was not of giving in the non-sinokers and out of pince in the sinokers with a mean ratio for smokers to non-smokers of 65.2% (95% Cl: 44.3 to 95.9, p = 0.031). The geometric mean of the AUC_{pair} was 18726 ng·h/mL in the non-smokers and 6718 ng·h/mL in the smokers with a mean ratio of 35.9% (95% Cl: 23.7 to 54.3, p < 0.0001). The geometric mean of the C_{24h} was 288 ng/mL in the non-smokers and 34.8 ng/mL in the smokers with a mean ratio of 12.1% (95% Cl: 4.82 to 30.2, p = 0.0001).

In the nivotal Phase III NSCLC trial current smokers achieved erlotinib steady state trough plasma concentration of 0.65 µg/mL (n=16) which was approximately 2-fold less than the former smokers or patients who had never smoked (1.28 µg/mL, n=108). This effect was accompanied by a 24% increase in apparent erlotinib plasma clearance. In a phase I dose escalation study in NSCLC patients who were current smokers, pharmacokinetic analyses at steady-state indicated a dose proportional increase in erlotinib exposure when the erlotinib dose was increased from 150 mg to the maximum tolerated dose of 300 mg. Steady-state trough plasma concentrations at a 300 mg dose in current smokers in this study was 1.22 µg/mL (n=17).

Based on the results of pharmacokinetic studies, current smokers should be advised to stop smoking while taking erlotinib, as plasma concentrations could be reduced other

Based on population pharmacokinetic analysis, the presence of an opioid appeared to increase exposure by about 11%.

A second population pharmacokinetic analysis was conducted that incorporated erlotinib data from 204 A second population pharmacounteric analysis was conducted marmociporated endimo and mon 204 pancreatic cancer patients who received endotinib plus gencitabine. This analysis demonstrated that covariants affecting endotinib clearance in patients from the pancreatic study were very similar to those seen in the prior single agent pharmacokinetic analysis. No new covariate effects were identified. Coadministration of gemcitabine had no effect on erlotinib plasma clearance.

Paediatric population: There have been no specific studies in paediatric patients

Elderly population: There have been no specific studies in elderly patients.

Hepatic impairment: Erlotinib is primarily cleared by the liver. In patients with solid tumours and with moderately impaired hepatic function (Child-Pugh score 7-9), geometric mean erlotinib AUC, and is not considered clinically relevant. No data are available regarding the influence of severe hepatic dysfunction on the pharmacokinetics of erlotinib. In population pharmacokinetic analysis, increased serum oncentrations of total bilirubin were associated with a slower rate of erlotinib clearance

Renal impairment: Erlotinib and its metabolites are not significantly excreted by the kidney, as less than 9% of a single dose is excreted in the urine. In population pharmacokinetic analysis, no clinically significant relationship was observed between erlotinib clearance and creatinine clearance, but there are no data available for patients with creatinine clearance <15 ml/mir

Indications Non-Small Cell Lung Cancer (NSCLC):

Erlocip-E 150 is indicated for the first-line treatment of patients with locally advanced or metastatic nonsmall cell lung cancer (NSCLC) with EGFR activating mutations.

Erlocip-E 150 is also indicated as monotherapy for maintenance treatment in patients with locally advanced or metastatic NSCLC with stable disease after 4 cycles of standard platinum-based first-line chemotherapy

Erlocip-E 150 is also indicated for the treatment of patients with locally advanced or metastatic NSCLC after failure of at least one prior chemotherapy regimen.

When prescribing Erlocip-E 150 factors associated with prolonged survival should be taken into account. No survival benefit or other clinically relevant effects of the treatment have been demonstrated in patients with Epidermal Growth Factor Receptor (EGFR)-IHC negative tumours (see Pharmacodynamics)

Pancreatic cancer: Erlocip-E 150 in combination with gemcitabine is indicated for the treatment of patients with metastatic pancreatic cancer.

When prescribing Erlocip-E 150 factors associated with prolonged survival should be taken into account (see Dosage and Method of Administration and Pharma

No survival advantage could be shown for patients with locally advanced dis

Dosage and Method of Administration Erlocip-E 150 treatment should be supervised by a physician experienced in the use of anti-cancer therapies

Patients with Non-Small Cell Lung Cancer: EGFR mutation testing should be performed prior to initiation of Erlocip-E 150 therapy in chemo-naïve patients with advanced or metastatic NSCLC.

When dose adjustment is necessary, the dose should be reduced in 50 mg steps (see Warnings and

Patients with renal impairment: The safety and efficacy of erlotinib has not been studied in patients with renal impairment (serum creatinine concentration >1.5 times the upper normal limit). Based on pharmacokinetic data no dose adjustments appear necessary in patients with mild or moderate renal impairment (see Pharmacokinetics). Use of Erlocip-E 150 in patients with severe renal impairment is not

Paediatric population: The safety and efficacy of erlotinib in patients under the age of 18 years has not

Interstitial Lung Disease

Cases of interstitial lung disease (ILD)-like events, including fatalities, have been reported uncommonly patients receiving erlotinib for treatment of non-small cell lung cancer (NSCLC), pancreatic cancer or othe advanced solid tumours. In the pivotal study BR 21 in NSCI C, the incidence of ILD (0.8%) was the same in both the placeba and erlotinib groups. In the parcreatic cancer study in combination with genericabine the incidence of ILD-like events was 2.5% in the erlotinib plus generictabine group versus 0.4% in the placebo plus gemcitabine treated group. The overall incidence in erlotinib treated patients from a studies (including uncontrolled studies and studies with concurrent chemotherapy) is approximately 0.6% compared to 0.2% in patients on placebo. Reported diagnoses in patients suspected of having ILD-like events included pneumonitis, radiation pneumonitis, hypersensitivity pneumonitis, interstitial pued of having ILD-like interstitial lung disease, obliterative bronchiolitis, pulmonary fibrosis, Acute Respiratory Distress Syndrome (ARDS), alveolitis, and lung infiltrative bronchiolitis, pulmionary inforesis, Acute vespiratory Distress Syndrome (ARDS), alveolitis, and lung infiltration. Symptoms started from a few days to several months after initiating erlotinib therapy. Confounding or contributing factors such as concomitant or prior chemotherapy, prior radiotherapy, pre-existing parenchymal lung disease, metastatic lung disease, or pulmonary infections were frequent. A higher incidence of ILD (approximately 5% with a mortality rate of 1.5%) is seen among patients with Japanese origin

In patients who develop acute onset of new and/or progressive unexplained pulmonary symptoms such as dyspnoea, cough and fever, erlotinib therapy should be interrupted pending diagnostic evaluation. Patients treated concurrently with erfotinib and gemcitabine should be monitored carefully for the possibility to develop ILD-like toxicity. If ILD is diagnosed, erfotinib should be discontinued and appropriate treatment initiated as necessary (see *Undesirable Effects*).

Diarrhoea, dehydration, electrolyte imbalance and renal failure

Diarrhoea (including very rare cases with a fatal outcome) has occurred in approximately 50% of patients on eriotinib and moderate or severe diarrhoes should be treated with e.g. loperamide. In some cases dose reduction may be necessary. In the clinical studies doses were reduced by 50 mg steps. Dose reductions by 25 mg steps have not been investigated. In the event of severe or persistent diarrhoea, nausea anorexia, or vomiting associated with dehydration, erlotinib therapy should be interrupted and appropriate easures should be taken to treat the dehydration, endmine and apy should be interpret and appropri-hypokalaemia and renal failure (including fatalities). Some cases were secondary to severe dehydrati due to diarrhoea, vomiting and/or anorexia, while others were confounded by concomitant chemotherapy In more severe or persistent cases of diarrhoea, or cases leading to dehydration, particularly in group of patients with aggravating risk factors (especially concomitant chemotherapy and other m symptoms or diseases or other predisposing conditions including advanced age), erlotinib therapy should be interrupted and appropriate measures should be taken to intensively rehydrate the patients intravenously. In addition, renal function and serum electrolytes including potassium should be monitored patients at risk of dehyd

Hepatitis, hepatic failure

Rare cases of hepatic failure (including fatalities) have been reported during use of erlotinib. Confounding factors have included pre-existing liver disease or concomitant hepatotoxic medications. Therefore in Industry induced pre-staining liver underse of concominant replaceater medications. Interesting, such patients, periodic liver function testing should be considered. Erlotinib dosing should be interrupted if changes in liver function are severe (see Undesirable Effects). Erlotinib is not recommended for use in patients with severe hepatic dysfunction

Gastrointestinal perforation

Patients receiving entoriation are at increased risk of developing gastrointestinal perforation, which was observed uncommonly (including some cases with a fatal outcome). Patients receiving concomitant anti-angiogenic agents, corticosteroids, NSAIDs, and/or taxane based chemotherapy, or who have prior history of peptic ulceration or diverticular disease are at increased risk. Erlotinib should be perm discontinued in patients who develop gastrointestinal perforation (see Undesirable Effects).

Bullous and exfoliative skin disorders

ering and exfoliative skin conditions have been reported, including very rare cases suggestive of Stevens-Johnson syndrome/Toxic epidermal necrolysis, which in some cases were fatal suggestive of stevens som som syndrome rouce epidemia necrolysis, winch in some cases were raise (see Undestrable Effects). Endotinb treatment should be interrupted or discontinued if the patient develops severe bullous, blistering or exfoliating conditions. Patients with bullous and exfoliative skin disorders should be tested for skin infection and treated according to local management guidelines

<u>Ocular disorders</u> Patients presentir ≝ tring with signs and symptoms suggestive of keratitis such as acute or worsening: eye acrimation, light sensitivity, blurred vision, eye pain and/or red eye should be referred promptly to an ophthalmology specialist. If a diagnosis of ulcerative keratitis is confirmed, treatment with Erlotinib should be interrupted or discontinued. If keratitis is diagnosed, the benefits and risks of continuing treatment should be carefully considered. Erlotinib should be used with caution in patients with a history of keratitis, ulcerative keratitis or severe dry eye. Contact lens use is also a risk factor for keratitis and ulceration. Very rare cases of corneal perforation or ulceration have been reported during use of erlotinib (see Undesirable Effects)

Interactions with other medicinal products Potent inducers of CYP3A4 may reduce the efficacy of erlotinib whereas potent inhibitors of CYP3A4 may lead to increased toxicity. Concomitant treatment with these types of agents should be avoided (see Drug Interactions)

Other forms of interactions

Erlotinib is characterised by a decrease in solubility at pH above 5. Medicinal products that after the pH of the upper Gastro-Intestinal (GI) tract, like proton pump inhibitors, H2 antagonists and antacids, may after the solubility of erlotinib and hence its bioavailability. Increasing the dose of erlotinib when co-administered with such agents is not likely to compensate for the loss of exposure. Combination of erlotinib with proton pump inhibitors should be avoided. The effects of concomitant administration of erlotinib with H2 antagonists and antacids are unknown; however, reduced bioavailability is likely. Therefore, concomitant administration of these combinations should be avoided (see Drug Interactions). If the use of antacids is sary during treatment with Erlotinib they should be taken at least 4 hours before or 2 hours after the daily dose of Erlotinib

The tablets contain lactose and should not be administered to patients with rare hereditary problems of galactose intolerance, Lapp lactase deficiency or glucose-galactose malabsorption

Drug Interactions

Interaction studies have only been performed in adults

expression of CYP1A1 in human tissues.

Erlotinib and other CYP substrates Erlotinib is a potent inhibitor of CYP1A1, and a moderate inhibitor of CYP3A4 and CYP2C8, as well as a through the potent infinition of the term of and a model and infinition of the potent and the potent infinition of the term of the strong inhibition of CYP1A1 is unknown due to the very limited the physiological relevance of the strong inhibition of CYP1A1 is unknown due to the very limited The physiological re

When erlotinib was co-administered with ciprofloxacin, a moderate CYP1A2 inhibitor, the erlotinib exposure (AUC) increased significantly by 39%, while no statistically significant change in C_{max} sa found Similarly, the exposure to the active metabolite increased by about 60% and 48% for AUC and C_{max} respectively. The clinical relevance of this increase has not been established. Caution should be exercised when ciprofloxacin or potent CYP1A2 inhibitors (e.g. fluvoxamine) are combined with erlotinib. If adverse eactions related to erlotinib are observed, the dose of erlotinib may be reduced.

Pre-treatment or co-administration of erlotinib did not alter the clearance of the prototypical CYP3A4 substrates, midazolam and erythromycin, but did appear to decrease the oral bioavailability of midazolam by up to 24%. In another clinical study, erlotinib was shown not to affect pharmacokinetics of the or op to 24.8. In another calindar addition, endown was shown not to anext pharmacokinetics of the concomitantly administered CYP3A4/2C8 substrate paclitaxel. Significant interactions with the clearance of other CYP3A4 substrates are therefore unlikely.

The inhibition of glucuronidation may cause interactions with medicinal products which are substrates of UGT1A1 and exclusively cleared by this pathway. Patients with low expression levels of UGT1A1 or genetic glucuronidation disorders (e.g. Gilbert's disease) may exhibit increased serum concentrations of bilirubin and must be treated with caution

Erlotinib is metabolised in the liver by the hepatic cytochromes in humans, primarily CYP3A4 and to a Linear the second secon occur with active substances which are metabolised by, or are inhibitors or inducers of, these enzymes.

Potent inhibitors of CYP3A4 activity decrease erlotinib metabolism and increase erlotinib plasma concentrations. In a clinical study, the concomitant use of erlotinib with ketoconazole (200 mg orally twice daily for 5 days), a potent CYP3A4 inhibitor, resulted in an increase of erlotinib exposure (86% of AUC and 69% of C_{max}). Therefore, caution should be used when erlotinib is combined with a potent CYP3A4 inhibitor,

e.g. azole antifungals (i.e. ketoconazole, itraconazole, voriconazole), protease inhibitors, erythromycin or clarithromycin. If necessary the dose of erlotinib should be reduced, particularly if toxicity is observed.

Potent inducers of CYP3A4 activity increase erlotinib metabolism and significantly decrease erlotinib plasma concentrations. In a clinical study, the concomitant use of erlotinib and rifampicin (600 mg orally once daily for 7 days), a potent CYP3A4 inducer, resulted in a 69% decrease in the median erlotinib AUC. mpicin with a single 450 mg dose of erlotinib resulted in a mean erlotinib expos (AUC) of 57.5% of that after a single 150 mg erlotinib dose in the absence of rifampicin treatment. Cotration of erlotinib with CYP3A4 inducers should therefore be avoided. For patients who require concomitant treatment with erforts and a potent CYP3A4 inducer such as rifampicin an increase in dose to 300 mg should be considered while their safety (including renal and liver functions and serum electrolytes) is closely monitored, and if well tolerated for more than 2 weeks, further increase to 450 mg could be considered with close safety monitoring. Reduced exposure may also occur with other inducers e.g. phenytoin, carbamazepine, barbiturates or St. John's Wort (*hypericum perforatum*). Caution should be observed when these active substances are combined with erlotinib. Alternate treatments lacking potent CYP3A4 inducing activity should be considered when possible.

Erlotinib and coumarin-derived anticoadulants

Interaction with countrain-derived anticoagularits including warfarin leading to increased International Normalized Ratio (INR) and bleeding events, which in some cases were fatal, have been reported in patients receiving erlotinib. Patients taking coumarin-derived anticoagulants should be monitored regularly for any changes in prothrombin time or INR.

Edotinib and statins The combination of erlotinib and a statin may increase the potential for statin-induced myopathy, including rhabdomyolysis, which was observed rarely

Erlotinib and smokers

Results of a pharmacokinetic interaction study indicated a significant 2.8-, 1.5- and 9-fold reduced AUC_{infl} C_{max} and plasma concentration at 24 hours, respectively, after administration of erlotinib in smokers as compared to non-smokers (see *Pharmacokinetics*). Therefore, patients who are still smoking should be encouraged to stop smoking as early as possible before initiation of treatment with erlotinib, as plasma encouraged to stop showing as early as possible before initiation of treatment with encourse, as prasm encloting concentrations are reducied otherwise. The clinical effect of the decreased exposure has not bee formally assessed but it is likely to be clinically significant.

Erlotinib and P-glycoprotein inhibitors

Erlotinib is a substrate for the P-olycoprotein active substance transporter. Concomitant administration of inhibitors of Pgp, e.g. cyclosporine and verapamil, may lead to altered distribution and/or altered elimination of erlotinib. The consequences of this interaction for e.g. CNS toxicity have not been established. Caution should be exercised in such situations.

Erlotinib and medicinal products altering pH

ein solubility at pH above 5. Medicinal products that alter the pH of by a de The upper Gastro-Intestinal (GI) tract may alter the solubility of erlotinib and hence its bioavailability. Co-administration of erlotinib with omeprazole, a proton pump inhibitor (PPI), decreased the erlotinib exposure [AUC] and maximum concentration [C_{max}] by 46% and 61%, respectively. There was no change to T_{max} or proof and meaning concentration C_{max} by C_{max} or R_{r} , respectively. The definition of an order R_{max} and R_{m Increasing the dose of erlotinib when co-administered with such agents is not likely to compensate for this loss of exposure. However, when erlotinib was dosed in a staggered manner 2 hours before or 10 hours after ranitidine 150 mg b.i.d., erlotinib exposure (AUC) and maximum concentrations [C_{max}] decreased only by 15% and 17%, respectively. The effect of antacids on the absorption of erlotinib has not been tigated but absorption may be impaired, leading to lower plasma levels. In summary, the combination of erlotinib with proton pump inhibitors should be avoided. If the use of antacids is considered necessary during treatment with proton pump infinitions should be avoided. If the use of antactors is considered necessary during treatment with erlotinib, they should be taken at least 4 hours before or 2 hours after the daily dose of erlotinib. If the use of ranitidine is considered, it should be used in a staggered manner; i.e. erlotinib must be taken at least 2 hours before or 10 hours after ranitidine dosing.

Erlotinib and Gemcitabine

In a Phase Ib study, there were no significant effects of gemcitabine on the pharmacokinetics of erlotinib nor were there significant effects of erlotinib on the pharmacokinetics of gemcitabine.

Erlotinib and Carboplatin/Paclitaxel

Erlotinib incr ses platinum concentrations. In a clinical study, the concomitant use of erlotinib with carboplation and pactaxel led to an increase of total platinum AUC_{0.48} of 10.6%. Although statistically significant, the magnitude of this difference is not considered to be clinically relevant. In clinical practice, there may be other co-factors leading to an increased exposure to carboplatin like renal impairment. There were no significant effects of carboplatin or paclitaxel on the pharmacokinetics of erlotinit

Erlotinib and Capecitabine

ecitabine may increase erlotinib concentrations. When erlotinib was given in combination with ecitabine, there was a statistically significant increase in erlotinib AUC and a borderline increase in when compared with values observed in another study in which erlotinib was given as single agent. ere were no significant effects of erlotinib on the pharmacokinetics of capecita

Erlotinib and proteasome inhibitors

ome inhibitors including bortezomib may be expected to influence Due to the working mechanism, proteas the effect of EGFR inhibitors including erlotinib. Such influence is supported by limited clinical data and preclinical studies showing EGFR degradation through the protea

Fertility, Pregnancy and Lactation

Pregnancy There are no adequate data for the use of erlotinib in pregnant women. Studies in animals have shown no evidence of teratogenicity or abnormal parturition. However, an adverse effect on the pregnancy can not be excluded as rat and rabbit studies have shown increased embryo/foetal lethality. The potential risk for humans is unknown

Women of childbearing potential

Women of childbearing potential Women of childbearing potential must be advised to avoid pregnancy while on Erlotinib. Adequate contraceptive methods should be used during therapy, and for at least 2 weeks after completing therapy. Freatment should only be continued in pregnant women if the potential benefit to the mother outweighs the risk to the foetus

Breast-feeding

whether erlotinib is excreted in human milk. Because of the potential harm to the infan mothers should be advised against breast-feeding while receiving Erlotinit Fertility

Studies in animals have shown no evidence of impaired fertility. However, an adverse effect on the fertility cannot be excluded as animal studies have shown effects on reproductive parameters. The pote for humans is unknown.

Undesirable Effects

Non-small cell lung cancer (Erlotinib administered as monotherapy): In a randomized double-blind study (BR.21; erlotinib administered as second line therapy), rash (75%) and diarrhoea (54%) were the most commonly reported adverse drug reactions (ADRs). Most were Grade 1/2 in severity and manageable without intervention. Grade 3/4 rash and diarrhoea occurred in 9% and 6%, respectively in erlotinib-treated patients and each resulted in study discontinuation in 1% of patients. Dose reduction for rash and diarrhoea was needed in 6% and 1% of patients, respectively. In study BR.21, the median time to onset of rash was 8 days, and the median time to onset of diarrhoea was 12 days.

In general, rash manifests as a mild or moderate erythematous and papulopustular rash, which may occur or worsen in sun exposed areas. For patients who are exposed to sun, protective clothing, and/or use of sun screen (e.g. mineral-containing) may be advisable.

erse reactions occurring more frequently (≥3%) in erlotinib-treated patients than in the placebo group in the pivotal study BR.21, and in at least 10% of patients in the erlotinib group, are summarised by National Cancer Institute-Common Toxicity Criteria (NCI-CTC) Grade in Table 2. The following terms are used to rank the undesirable effects by frequency: very common (\geq 1/10); common (\geq 1/100 to <1/10); uncommon (\geq 1/100 to <1/100); rare (\geq 1/10,000 to <1/100); very rare (<1/10,000)

including isolated reports. Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness

Fatigue

	Erlotinib N = 485			Placebo N = 242
NCI-CTC Grade	Any Grade	3	4	Any Grade
MedDRA Preferred Term	%	%	%	%
Total patients with any AE	99	40	22	96
Infections and infestations Infection*	24	4	0	15
Metabolism and nutrition disorders Anorexia	52	8	1	38
Eye disorders Keratoconjunctivitis sicca	12	0	0	3
Conjunctivitis	12	<1	0	2
Respiratory, thoracic and mediastinal disorders Dyspnoea Cough	41 33	17 4	11 0	35 29
Gastrointestinal disorders Diarrhoea** Nausea Vomiting Stomatitis Abdominal pain	54 33 23 17 11	6 3 2 <1 2	<1 0 <1 0 <1	18 24 19 3 7
Skin and subcutaneous tissue disorders Rash*** Pruritus Dry skin	75 13 12	8 <1 0	<1 0 0	17 5 4
General disorders and administration site conditions	52	14	4	45

* Severe infections, with or without neutropenia, have included pneumonia, sepsis, and cellulitis Can lead to dehydration, hypokalemia and renal failure. *** Rash included dermatitis acneiform

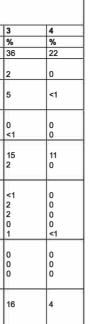
In another double-blind randomized placebo-controlled Phase III study BO18192 (SATURN): erlotinit was administered as maintenance after first-line chemotherapy. SATURN was conducted in 889 patients with advanced, recurrent or metastatic NSCLC following first-line standard platinum-based chemotherapy no new safety signals were identified.

The most frequent ADRs seen in patients treated with erlotinib in study BO18192 were rash and diarrhoes (any Grade 49% and 20%, respectively), most were Grade 1/2 in severity and manageable without intervention. Grade 3 rash and diarrhoea occurred in 6% and 2% of patients, respectively. No Grade 4 rash or diarrhoea was observed. Rash and diarrhoea resulted in discontinuation of erlotinib in 1% and <1% of patients, resp ectively. Dose modifications (interruptions or reductions) for rash and diarr needed in 8.3% and 3% of patients, respectively.

In an open-label, randomized phase III study, ML20650 conducted in 154 patients, the safety of erlotinib for first-line treatment of NSCLC patients with EGFR activating mutations was assessed in 75 patients; no new safety signals were observed in these patients.

The most frequent ADRs seen in patients treated with erlotinib in study ML20650 were rash and diarrhoea (any Grade 80% and 57%, respectively), most were Grade 1/2 in severity and manageable without intervention. Grade 3 rash and diarrhoea occurred in 9% and 4% of patients, respectively. No Grade 4 rash or diarrhoea was observed. Both rash and diarrhoea resulted in discontinuation of erlotinib in 1% of ifications (interruptions or reductions) for rash and diarrhoea were needed in 11% and 7% of patients, respectively.

Pancreatic cancer (Erlotinib administered concurrently with gemcitabine):


The most common adverse reactions in pixotal study PA3 in parcreatic cancer patients receiving erlotinib 100 mg plus gemcitabine were fatigue, rash and diarrhoea. In the erlotinib plus gemcitabine arm, Grade 3/4 rash and diarrhoea were each reported in 5% of patients. The median time to onset of rash and diarrhoea was 10 days and 15 days, respectively. Rash and diarrhoea each resulted in dose reductions in 2% of patients, and resulted in study discontinuation in up to 1% of patients receiving erlotinib plus gemcitabine

Adverse reactions occurring more frequently (≥3%) in erlotinib 100 mg plus gemcitabine-treated patie than in the placebo plus gemcitabine group in the pivotal study PA.3, and in at least 10% of patients in the erlotinib 100 mg plus gemcitabine group, are summarised by National Cancer Institute-Common Toxicity Criteria (NCI-CTC) Grade in Table 3. The following terms are used to rank the undesirable effects by frequency: very common (≥1/10); common

(≥1/100 to <1/10); uncommon (≥1/1,000 to <1/100); rare (≥1/10,000 to <1/1,000); very rare (<1/10,000)

Nithin each frequency grouping, adverse reactions are presented in order of decreasing serio Table 3: Very common ADRs in study PA.3 (100 mg cohort)

	Erlotinib N = 259			Placebo N = 256	
NCI-CTC Grade	Any Grade	3	4	Any Grade	
MedDRA Preferred Term	%	%	%	%	
Total patients with any AE	99	48	22	97	
Infections and infestations Infection*	31		<1	24	
	31	3	<1	24	
Metabolism and nutrition					
disorders	39	2	0	29	
Weight decreased					
Psychiatric disorders					
Depression	19	2	0	14	
Nervous system disorders					
Neuropathy	13	1	<1	10	
Headache	15	<1	0	10	
Respiratory ,thoracic and		1			
mediastinal disorders	16	0	0	11	
Cough					
Gastrointestinal disorders		1			
Diarrhoea**	48	5	<1	36	
Stomatitis	22	<1	0	12	
Dyspepsia	17	<1	0	13	
Flatulence	13	0	0	9	
Skin and subcutaneous		1			
tissue disorders	69	5	0	30	
Rash***	14	lo	lo	11	
Alopecia					
General disorders and		1			
administration site	73	14	2	70	
conditions	36	3	o	30	
Fatigue	12	0	lo	9	
Pyrexia					
Rigors					
-					

	3	4
1	%	%
	48	16
	6	<1
	<1	0
	<1	0
	<1 0	0
	0	0
	2 0 <1 <1	0 0 0 0
	1 0	0 0
	13 4 0	2 0 0

* Severe infections, with or without neutropenia, have included pneumonia, sepsis, and cellulitis ** Can lead to dehydration, hypokalemia and renal failure. Rash included dermatitis acneifo

Other Observations:

Safety evaluation of erlotinib is based on the data from more than 1200 patients treated with at least one 150 mg dose of erlotinib monotherapy and more than 300 patients who received erlotinib 100 or 150 r in combination with genetabine.

The following adverse reactions have been observed in patients who received erlotinib administered as single agent and patients who received erlotinib concurrently with chemotherapy

Very common ADRs from the BR 21 and PA 3 studies are presented in Tables 2 and 3, other ADRs ding those from other studies are summarized in Table 4

Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness Table 4: Summary of ADRs per frequency category:

Body System	Very common (≥1/10)	Common (≥1/100 to <1/10)	Uncommon (≥1/1,000 to <1/100)	Rare (≥1/10,000 to <1/1,000)	Very rare (<1/10,000)
Eye disorders		-Keratitis -Conjunctivitis ¹	-Eyelash changes ²		-Comeal perforations -Comeal ulcerations -Uveitis
Respiratory, thoracic and mediastinal disorders		-Epistaxis -Serious interstitial lung disease (ILD) ³			
Gastro- intestinal disorders	-Diarrhoea ⁷	-Gastro-intestinal bleeding ^{4, 7}	-Gastrointestinal perforations ⁷		
Hepato biliary disorders	-Liver function test abnormalities ⁵			-Hepatic failure 6	
Skin and subcutaneous tissue disorders		-Alopecia -Dry skin ¹ -Paronychia -Folliculitis -Acne/ Dermatitis acneiform -Skin fissures	-Hirsutism -Eyebrow changes -Brittle and Loose nails -Mild skin reactions such as hyperpigmentation	-Palmar plantar erythrodys- aesthesia syndrome	-Stevens- Johnson syndrome/ Toxic epidermal necrolysis ⁷
Renal and urinary disorders		-Renal insufficiency ¹	-Nephritis ¹ -Proteinuria ¹		

¹ In clinical study PA.3

Including in-growing eyelashes, excessive growth and thickening of the eyelashes.

³ Including fatalities, in patients receiving erlotinib for treatment of NSCLC or other advanced solid tumours (see Warnings and Precautions). A higher incidence has been observed in patients of Japanese o see Warnings and Precautions).

In clinical studies, some cases have been associated with concomitant warfarin administration and some with concomitant NSAID administration (see *Drug Interactions*). ⁵ Including increased alanine aminotransferase [ALT], aspartate aminotransferase [AST] and bilirubin. These were very common in clinical study PA.3 and common in clinical study BR.21. Cases were mainly

mild to moderate in severity, transient in nature or associated with liver metas

⁶ Including fatalities. Confounding factors included pre-existing liver disease or concomitant hepatotoxic medications (see Warnings and Precautions).

Including fatalities (see Warnings and Precautions)

Overdose

Symptoms Single oral doses of erlotinib up to 1000 mg erlotinib in healthy subjects, and up to 1600 mg in cancer patients have been tolerated. Repeated twice daily doses of 200 mg in healthy subjects were poorly tolerated after only a few days of dosing. Based on the data from these studies, severe adverse reactions recommended dose

Management

In case of suspected overdose, erlotinib should be withheld and symptomatic treatment initiated Incompatibility Shelf-Life 24 months Storage Store below 30°C

rlocip-E 150

Last Updated: September 2016

Cipla

Carton containing container of 10 Tablets